187 research outputs found

    Intergreen Time Calculation Method of Signalized Intersections Based on Safety Reliability Theory: A Monte-Carlo Simulation Approach

    Get PDF
    In China, around ninety percent of the traffic accidents at signalized intersections occur within the signal change intervals, especially during signal change from green to red. Hence, intergreen time (IGT), that is, yellow change interval plus red clearance interval, is of great significance to the safety at signalized intersections. The conventional calculation method of IGT ignores the randomness of drivers’ behaviors, which we believe is an important factor in calculation of IGT. Therefore, the purpose of this research is to investigate a new approach to calculate the IGT based on safety reliability theory. Firstly, a comprehensive literature review concerning the conventional calculation methods of IGT is conducted. Secondly, a theoretical calculation method of IGT based on safety reliability theory is put forward; different from the conventional methods, this model accounts for the uncertainty of driving behavior parameters. Thirdly, a Monte-Carlo simulation is employed to simulate the interactive process of perception-reaction time (PRT) and vehicular deceleration and solve the proposed model. Finally, according to the Monte-Carlo simulation results, the curve clusters describing the relationship between IGT, safety reliability (50%-90%), and intersection width (15-35m) are drawn. Results show that the IGT of a signalized intersection, obeying the normal distribution, is influenced by multiple factors and most sensitive to the PRT and vehicular deceleration. Our method thus successfully incorporates the probabilistic nature of driving behavior. Taking the safety reliability into consideration can provide a more reasonable method to calculate the IGT of signalized intersections. Document type: Articl

    FocusFlow: Boosting Key-Points Optical Flow Estimation for Autonomous Driving

    Full text link
    Key-point-based scene understanding is fundamental for autonomous driving applications. At the same time, optical flow plays an important role in many vision tasks. However, due to the implicit bias of equal attention on all points, classic data-driven optical flow estimation methods yield less satisfactory performance on key points, limiting their implementations in key-point-critical safety-relevant scenarios. To address these issues, we introduce a points-based modeling method that requires the model to learn key-point-related priors explicitly. Based on the modeling method, we present FocusFlow, a framework consisting of 1) a mix loss function combined with a classic photometric loss function and our proposed Conditional Point Control Loss (CPCL) function for diverse point-wise supervision; 2) a conditioned controlling model which substitutes the conventional feature encoder by our proposed Condition Control Encoder (CCE). CCE incorporates a Frame Feature Encoder (FFE) that extracts features from frames, a Condition Feature Encoder (CFE) that learns to control the feature extraction behavior of FFE from input masks containing information of key points, and fusion modules that transfer the controlling information between FFE and CFE. Our FocusFlow framework shows outstanding performance with up to +44.5% precision improvement on various key points such as ORB, SIFT, and even learning-based SiLK, along with exceptional scalability for most existing data-driven optical flow methods like PWC-Net, RAFT, and FlowFormer. Notably, FocusFlow yields competitive or superior performances rivaling the original models on the whole frame. The source code will be available at https://github.com/ZhonghuaYi/FocusFlow_official.Comment: The source code of FocusFlow will be available at https://github.com/ZhonghuaYi/FocusFlow_officia

    Future Healthy Oil: Precision Nutrition and Moderate Processing

    Get PDF
    Oil is a significant source of fatty acids and various trace functional components, and plays a vital role in regulating human health. The macro- and micro-components in oils are closely related to nutritional health. This paper introduces the future development goals and strategies of healthy oils from two aspects of precise nutrition and moderate processing. Firstly, precise nutrition based on life cycle and physiological state is a priority research area of lipid science. On the other hand, moderate processing will retain nutrients such as vitamin E, phytosterols, and squalene to a greater extent, and avoid the formation of risk factors such as trans fatty acids, 3-chloropropanol esters, and glycidyl esters. Moderate processing not only ensures the safety of oil, but also reduces the loss of healthy and beneficial fat concomitants, which is the development direction of oil engineering research. Therefore, under the dual demands of nutrition and safety, accurate nutrition and moderate processing of oils will help the implementation of "Healthy China" and "Double- Carbon" strategies. Future healthy oils will not only provide basic nutrition and flavor, but also give specific health functions to people with different life cycles, such as infants, children, adolescents, adults and the elderly, and maintain the homeostasis of people with different physiological states including pregnant and lactating women

    Spatiotemporal patterns and spatial risk factors for visceral leishmaniasis from 2007 to 2017 in Western and Central China: a modelling analysis

    Get PDF
    Visceral leishmaniasis (VL) is a neglected disease caused by trypanosomatid protozoa in the genus Leishmania, which is transmitted by phlebotomine sandflies. Although this vector-borne disease has been eliminated in several regions of China during the last century, the reported human VL cases have rebounded in Western and Central China in recent decades. However, understanding of the spatial epidemiology of the disease remains vague, as the spatial risk factors driving the spatial heterogeneity of VL. In this study, we analyzed the spatiotemporal patterns of annual human VL cases in Western and Central China from 2007 to 2017. Based on the related spatial maps, the boosted regression tree (BRT) model was adopted to explore the relationships between VL and spatial correlates as well as predicting both the existing and potential infection risk zones of VL in Western and Central China. The mined links reveal that elevation, minimum temperature, relative humidity, and annual accumulated precipitation make great contributions to the spatial heterogeneity of VL. The maps show that Xinjiang Uygur Autonomous Region, Gansu, western Inner Mongolia Autonomous Region, and Sichuan are predicted to fall in the highest infection risk zones of VL. Approximately 61.60 million resident populations lived in the high-risk regions of VL in Western and Central China. Our results provide a better understanding of how spatial risk factors driving VL spread as well as identifying the potential endemic risk region of VL, thereby enhancing the biosurveillance capacity of public health authorities

    Pituitary tissue-specific miR-7a-5p regulates FSH expression in rat anterior adenohypophyseal cells

    Get PDF
    The follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, plays an important role in regulating reproductive processes. In this study, using the TargetScan program, we predicted that microRNAs (miRNAs) regulate FSH secretion. Dual-luciferase reporter assays were performed and identified miR-7a-5p. MiR-7a-5p has been reported to regulate diverse cellular functions. However, it is unclear whether miR-7a-5p binds to mRNAs and regulates reproductive functions. Therefore, we constructed a suspension of rat anterior pituitary cells and cultured them under adaptive conditions, transfected miR-7a-5p mimics or inhibitor into the cell suspension and detected expression of the FSHb gene. The results demonstrated that miR-7a-5p downregulated FSHb expression levels, while treatment with miR-7a-5p inhibitors upregulated FSHb expression levels relative to those of negative control groups, as shown by quantitative PCR analysis. The results were confirmed with a subsequent experiment showing that FSH secretion was reduced after treatment with mimics and increased in the inhibitor groups, as shown by enzyme-linked immunosorbent assay. Our results indicated that miR-7a-5p downregulates FSHb expression levels, resulting in decreased FSH synthesis and secretion, which demonstrates the important role of miRNAs in the regulation of FSH and animal reproduction

    Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    Get PDF
    BACKGROUND: A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F(1) hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. RESULTS: Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. CONCLUSIONS: A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study

    Salmon Calcitonin Exerts an Antidepressant Effect by Activating Amylin Receptors

    Get PDF
    Depressive disorder is defined as a psychiatric disease characterized by the core symptoms of anhedonia and learned helplessness. Currently, the treatment of depression still calls for medications with high effectiveness, rapid action, and few side effects, although many drugs, including fluoxetine and ketamine, have been approved for clinical usage by the Food and Drug Administration (FDA). In this study, we focused on calcitonin as an amylin receptor polypeptide, of which the antidepressant effect has not been reported, even if calcitonin gene-related peptides have been previously demonstrated to improve depressive-like behaviors in rodents. Here, the antidepressant potential of salmon calcitonin (sCT) was first evaluated in a chronic restraint stress (CRS) mouse model of depression. We observed that the immobility duration in CRS mice was significantly increased during the tail suspension test and forced swimming test. Furthermore, a single administration of sCT was found to successfully rescue depressive-like behaviors in CRS mice. Lastly, AC187 as a potent amylin receptor antagonist was applied to investigate the roles of amylin receptors in depression. We found that AC187 significantly eliminated the antidepressant effects of sCT. Taken together, our data revealed that sCT could ameliorate a depressive-like phenotype probably via the amylin signaling pathway. sCT should be considered as a potential therapeutic candidate for depressive disorder in the future

    CpG-binding protein CFP1 promotes ovarian cancer cell proliferation by regulating BST2 transcription

    Get PDF
    Epigenetic alterations have been functionally linked to ovarian cancer development and occurrence. The CXXC zinc finger protein 1 (CFP1) is an epigenetic regulator involved in DNA methylation and histone modification in mammalian cells. However, its role in ovarian cancer cells is unknown. Here, we show that CFP1 protein is highly expressed in human ovarian cancer tissues. Loss of CFP1 inhibited the growth of human ovarian cancer cells, promoted apoptosis, and increased senescence. CFP1 knockdown resulted in reduced levels of SETD1 (a CFP1 partner) and histone H3 trimethylation at the fourth lysine residue (H3K4me3). RNA-sequencing revealed that deletion of CFP1 resulted in mRNA reduction of bone marrow stromal cell antigen 2 (BST2). Bioinformatics analysis and chromatin immunoprecipitation showed that CFP1 binds to the promoter of BST2 and regulates its transcription directly. Overexpression of BST2 rescued the growth inhibitory effect of CFP1 loss. Furthermore, depletion of cullin-RING ubiquitin ligases 4 (CRL4) components ROC1 or CUL4A had significantly inhibited the expression of CFP1 and BST2 similar to MLN4924 treatment that blocked cullin neddylation and inactivated CRL4s. In conclusion, CFP1 promotes ovarian cancer cell proliferation and apoptosis by regulating the transcription of BST2, and the expression of CFP1 was affected by CRL4 ubiquitin ligase complex
    corecore